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Background

First acetogenic bacteria (Clostridium aceticum)
described by Wieringa in 1936:
4H, + 2CO, — CH,COOH + 2H,0

Harland G. Wood - entire career dedicated to CO, fixation

Wood (1952) - first study with 3CO, proving incorporation of CO,
during acetate formation

Autotrophic Acetyl-CoA pathway of CO, fixation only established in
the 90°s.

The “Wood-Ljungdahl Pathway” (1991)
Drake (1994)
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. Background The Wood-Ljungdahl Pathway

CO,
qun l
HCOOH
H,folate

«Eastern” | HCO-H,folate €0 )
or Methyl CODH l"“z “Western” or
Branch CH+-lH4folate CH,-Co(lll), co Carbonyl Branch

“Hzl!

CH,=H,folate MeTr AC

Biomass
“H," l (Cell Carbon)
Co(l)
CH,-H,folate

CFeSP SCOA ~a Acetate
+ATP

4H, +2CO, > CH,COOH + 2H,0

Figure 1.

(Rasgdale and Pierce, 2008)
The Wood-Ljungdahl pathway. “H,” 1s used in a very general sense to designate the
requirement for two electrons and two protons in the reaction
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5 Objectives

1. To evaluate the pressure inside the silos of maize silage.

2. To quantify the CO, absorption throughout the storage period.
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= Material and methods  gisnt pyc silos (8.8 L) properly sealed.

¥ | Maize forage (332 g kgt DM)
Storage at controlled-temperature room (24 £1 ¢C)
for 5 months

Silos attached to a 3-way valve and to a 1-L chamber
made of low-density polyethylene, for collecting all
gases. Chamber immersed in water

Pressure inside the silos assessed using a mercury
column manometer

Once the pressure become negative, four silos were
weekly fed with pure CO,. The gas was not forced
inside the silos!

After 147 days, silos were opened. Samples taken for
pH measuring.
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e Results

O
Pressure inside the silos (negative phase) 11 days of §a> prOdUCthn
3,235 + 388 mL kgt DM
Apr Apr May May May May June June July July Aug Sept
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00 t=g-n ““*-%--E.___“’ '-': —a
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-10,0 = Y ke -ai el Closed - 1
15,0 Xoxesd, o
n’:i. Q = =ir = Closed - 2
o 200 N Closed Increased negative pressure
-25,0 it . .
= o . 0— Closed - 4 until 101 days for silos kept
35,0 closed
40,0 \ ‘é*"*a{._; e -43 £ 2.6 mm Hg (-5.7 kPa)
-45,0 S— i;":"';"-';"’ﬁ““:::
-50,0
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19 supplies of CO,
5,590+2492 mL of CO, were
absorbed

Absorption continued
throughout the trial!

pH closed - 3.76+£0.03

pH CO, - 3.6310.02




XVII

ISC

B Discussion

The Wood-Ljungdahl pathway is an energy-generating process of reducing CO, to
acetate under anaerobiosis

22 bacterial genera are described (Drake at al, 2008)

This process has never been described for silages!

In the future silos can become bioreactors fixing pollutant gases from farm activities
(CO, CO,, N,0) into high quality nutritive compounds of feed
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Gas Fermentation—A Flexible
Platform for Commercial Scale
Production of Low-Carbon-Fuels and
Chemicals from Waste and
Renewable Feedstocks

FungMin Liew t, Michael E. Martin ', Ryan C. Tappel ', Bjorn D. Heijstra,
Christophe Mihalcea and Michael Kopke *

LanzaTech, inc., Skokie, IL USA

There is an immediate need to drastically reduce the emissions associated with
global fossil fuel consumption in order to limit climate change. However, carbon-based
materials, chemicals, and transportation fuels are predomvnanl\y made from fossil
sources and currently there is no alternative source available to adequately displace them.
Gas-fermenting microorganisms that fix carbon dioxide (CO2) and carbon monoxide (CO)
can break this dependence as they are capable of converting gaseous carbon to fuels
and chemicals. As such, the technology can utilize a wide range of feedstocks including
gasified organic matter of any sort(€.9. municipal solid waste, industrial waste, biomass,
and agricuttural waste residues) o industrial off-gases (e.g., from steel mills or processing
plants). Gas fermentation has matured to the point that large-scale production of ethanol
from gas has been demonstrated by two companies. This review gives an overview of the
gas fermentation process, focusing specifically on anaerobic acetogens. Applications of
synthetic biology and coupling gas fermentation to additional processes aré discussed in
detail. Both of these strategies, demonstrated at pench-scale, have apundant potential to
rapidly expand the commercial product spectrum ofgas fermentation and further improve
efficiencies and yields.

Keywords: gas fermentation, acetogens, Clostridium, syngas: synthetic biology, coupled processes, carbon
capture and utilization, low-carbor fuels

GAS FERMENTATION OVERVIEW

Introduction
In December 2015, 195 countries adopted the Paris Agreement at the end of the 21st Conference of
the Parties to the United Nations Framework Convention on Climate Change. The agreement “aims
{0 strengthen the global response {0 the threat of climate change” and seeks to hold the increase in
global average temperature t0 “well below 2°C above prc-mduslrial Jevels” (United Natior 2015).
Though non binding, this consensus underscores the rising urgency for actions that will limit the
amount of greenhouse gasses emitted into the atmosphere. T0 achieve the goal of staying within
the above mentioned 2°C target may require leaving @ third of oil reserves, half of gas reserves, and
over 80% of current coal reserves unused until 2050 (Friedlingstel _2014; McGlade and Ekins
5015). However, this time scale is likely t00 short to switch away from and eliminate the need for

Liew et al. (2016)
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\ Conclusion

Maize silage seems to be able for absorbing and fixing CO, by the Wood-Ljungdahl pathway.
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