Fibrolytic enzyme enhances feed efficiency of Nellore bulls when added to ensiling on corn-based silages

P.A.R. Salvo, L.S. Martins, F. Lopes, J.L.P. Daniel, L.G. Nussio

Introduction

- Exogenous fibrolytic enzymes (EFE)
 - improved *in vitro* dry matter digestion (Phakachoed et al. 2013)
- Inconsistency of responses when used as feed additive
 - suboptimal condition of the rumen (Adesogan et al. 2014);
 - Temperature = 39^oC
 - pH = 6

Hypothesis

 High moisture corn and snaplage could represent an environment, which enzymes could act properly (optimal temperature and pH) and improve silage quality and digestibility

Hypothesis

Cage Effect

Hypothesis

- α-Arabinofuranosidase
- Endo-1,4-ß-xylanase

Xylose

Objective

•Evaluate the performance of Nellore bulls fed high moisture corn silage and snaplage with fibrolytic enzyme complex added for ensiling

- Rovabio Advance P[®]
- Talaromyces versatilis
 - Endo-1,4-ß-xylanase
 - 25,000 VU/g
 - Endo-1,3(4)-ß-glucanase
 - 17,200 VU/g
- Dose 100 g/ton of Fresh Matter

Xylanases	Endo -1.4 β-xylanase β-xylosidase
B-glucanases	Endo - 1.3 1.4 β-glucanase Laminarinase
Debranching enzymes	α-arabinofuranosidase α-glucuronidase Ferulic acid esterase
Cellulases	Endo -1.4 β-glucanase Cellobiohydrolase β-glucosidase
Pectinases	Polygalacturonase Pectin esterase Endo -1.5 α-arabinanase α-galactosidase Rhamnogalacturonase
Proteases	Aspartic protease Metallo protease
Others	Endo -1.4 β-mannanase β-mannosidase

Snaplage Control

Snaplage added EFE

HMC Control

HMC added **EFE**

- Randomized Complete Block
 - Factorial 2×2

- 467 intact Nellore Bulls
 - Initial weight ~ 420 kg
 - 16 pens experimental units

Composition of experimental diets (DM)

Item	SNAP + HMC ¹		WPCS ² + HMC	
	Control	Enzyme	Control	Enzyme
Whole Plant Corn Silage	-	-	25%	25%
Snaplage	27.65%	27.65%	-	-
High Moisture Corn	51.13%	51.13%	53.18%	53.18%
Soybean Hulls	12%	12%	12%	12%
Soybean Meal	5.42%	5.42%	6.02%	6.02%
Total Puraphós AEB (25% Urea)*	3.80%	3.80%	3.80%	3.80%
Nutrients				
Dry Matter	66.61%	66.31%	62.61%	62.10%
Ash	5.00%	5.04%	5.28%	5.33%
Crude Protein	13.56%	12.61%	12.99%	12.75%
Ether Extract	3.60%	3.66%	3.39%	3.47%
NDF	26.52%	27.84%	29.41%	29.39%
Starch	47.43%	47.10%	42.73%	43.93%
NFC	51.31%	50.85%	48.93%	49.0 <mark>7</mark> % 📉

¹ Dose/animal – 1.05 g

²Dose/animal – 0.72 g; WPCS – not added EFE

^{*}Monensin - 800 mg/kg

Daily Feed bunk	Score description
score	
-2	+ 1 kg of DM of diet/bull
-1	+ 0.5 kg of DM of diet/bull
0	+ 0.3 kg of DM of diet/bull
0.5	Quantity (DM) equal to the last day, after two
_	following increases on diet offered
	Quantity (DM) equal to the last day (target)
1.5	- 0.3 kg of DM of diet/bull
2	- 1 kg of DM of diet/bull
3	Manual adjustment to reach the score 1
Full	Night score for full feed bunk
Empty	Night score for empty feed bunk

XVIII ISC

Feed Efficiency

Control

Enzyme

SEM -0.005; Diet -P=0.3358; Enzyme -P=0.0792; D*E -P=0.3978

Control

SEM – 1.05; Diet – P=0.7286; Enzyme – P=0.0791; D*E – P=0.4484

Enzyme

Control Enzyme

SEM - 0.03; Diet - P=0.7291; Enzyme - P=0.0792; D*E - P=0.4484

Control Enzyme

SEM - 0.03; Diet - P=0.7285; Enzyme - P=0.0791; D*E - P=0.4485

HMC In Vitro DMD (%)

Control

SEM - 0.37; Enzyme - P=0.0504

Enzyme

In vivo Starch Digestibility (%)

XVIII ISC

Conclusion

•The addition of fibrolytic enzyme complex on corn-based silages can improve feed efficiency in beef cattle, probably due to the increase in the digestibility, by facilitating the access to the starch granules

Acknowledgments

Vielen Dank!

