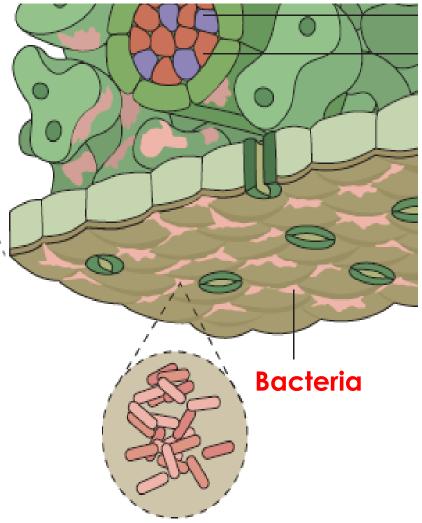
Microbial dynamics, fermentation, and aerobic stability of conventional and BMR corn hybrids ensiled at low moisture with or without a combo inoculant

J.J. Romero¹, Y. Joo², J. Park², Y. Zhao³, M.A. Balseca-Paredes⁴, F. Tiezzi⁵, E. Gutierrez-Rodriguez⁶, and M.S. Castillo⁴


J Dairy Sci., 2018

¹ Animal and Veterinary Sciences, University of Maine, USA
² Department of Animal Science, Gyeongsang National University, Korea
³ Department of Animal Nutrition, China Agricultural University, China
⁴ Department of Crop and Soil Sciences;
⁵ Department of Animal Sciences;
⁶ Department of Food Science, North Carolina State University, USA

NC STATE UNIVERSITY

Introduction

- Ensiling whole corn > 35%
 DM can result in poorly compacted, ↓ quality silos due to microbial aerobic spoilage.
- The microbial community of corn silages produced in suboptimal conditions have not been studied in as much detail compared with optimally stored silages (Muck, 2013).

Evaluate the effects of inoculant and corn hybrid (high DM %) on:

- Nutritional composition, fermentation, and aerobic stability
- > Bacterial and fungal taxonomic profiles
- > OTUs richness and shifts

... before and after ensiling.

Materials and Methods

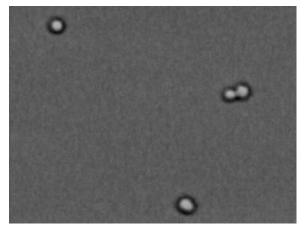
 Corn field at Piedmont Research Station (NCDA-NCSU), Salisbury, North Carolina.

Treatments

Factorial combination (4 x 2) of: Four corn hybrids (HYB):

Hybrid	Company	Туре	Relative Maturity
TMF2R737	Mycogen	Conventional	112
F2F817	Mycogen	BMR	116
P2089YHR	Pioneer	Conventional	120
P1449XR	Pioneer	BMR	114
	TMF2R737 F2F817 P2089YHR	TMF2R737MycogenF2F817MycogenP2089YHRPioneer	TMF2R737MycogenConventionalF2F817MycogenBMRP2089YHRPioneerConventional

Two additive levels (ADV)


Sterile dd water (CON) or inoculant (INO) were applied at 1 ml/kg of fresh corn.

Combo Inoculant

- L. buchneri 40788 (log 5.6 cfu/g of fresh corn)
- P. pentosaceus 12455 (log 5 cfu/g of fresh corn)
- □ Enzymes from *T. reesei*.

L. buchneri

P. pentosaceus

6 plots/hybrid were randomly located within field.

At ~41% DM and chopped to a TLC of 1.9 cm with kernel processing.

2 replicated piles (4.3 kg each, fresh basis) were obtained from each plot.

Ensiling

CON or INO randomly assigned to a pile/plot/hybrid (2×6×4= 48 piles).

Forage was packed into 7.6L mini-silos and stored at 23°C (± 1°C) for 100 d.

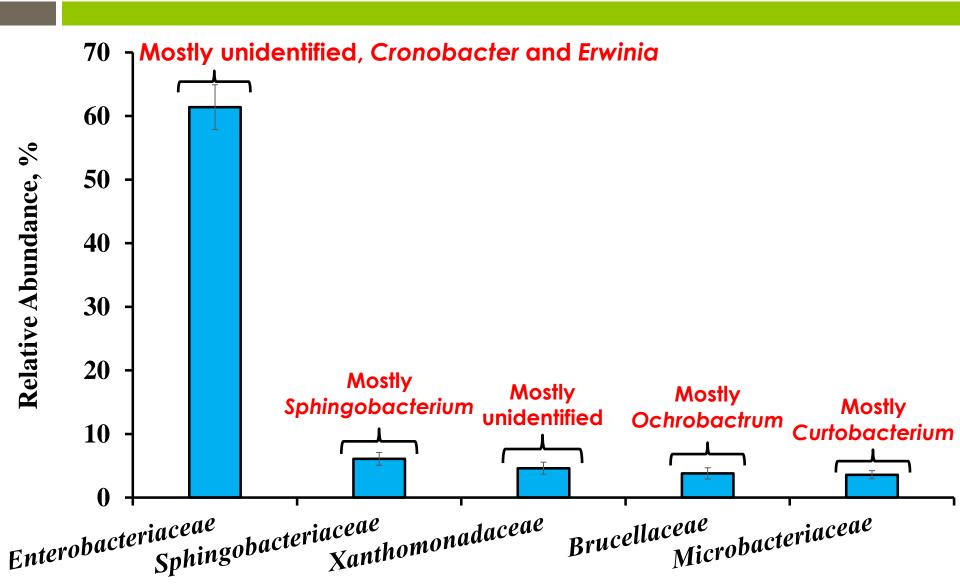
Density: ~192 kg of DM/m³

Experimental Design and Statistical Analysis

- CRD with a 4 (HYB) × 2 (ADV) factorial treatment arrangement.
 6 replicates per treatment.
- Model contained effect of HYB, ADV, and their interaction.
 - Data analyzed with Proc. GLM of SAS v9.4.
 - SLICE option used to analyze interactions.
 - Means separated by the LSD test.
 - □ Significance $P \leq 0.05$.

Results and Discussion

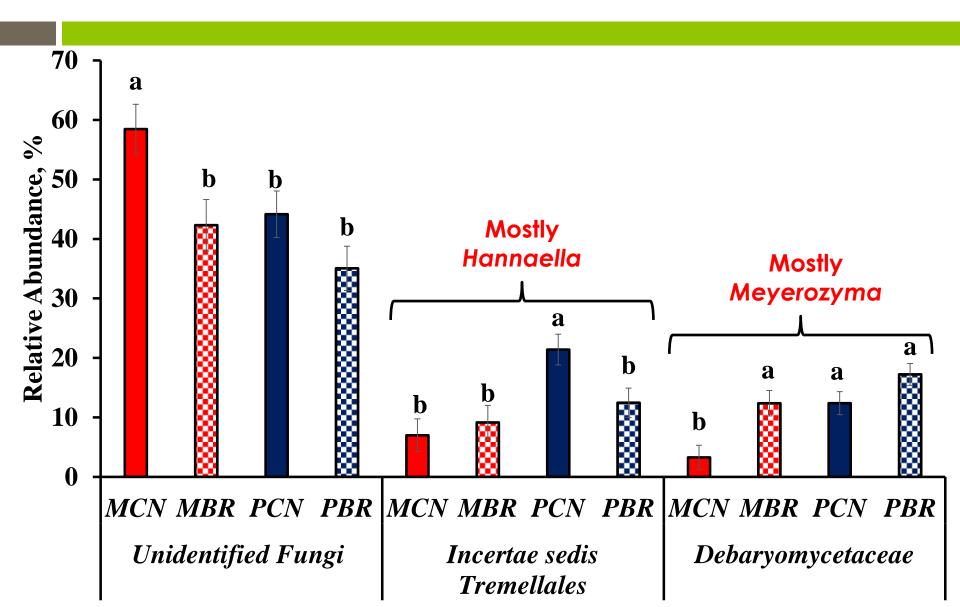
Bacteria (16S V4 region) Fungi (ITS region)


Day 0 Results

Item	MCN	PCN	MBR	PBR	SEM	
DM (%)	44.0ª	42.0 ^b	38 .1°	41.3 ^b	0.665	
% of DM						
СР	5.96 ^b	5.46 ^c	6.85ª	5.98 ^b	0.182	
WSC	3.32 ^b	3.48 ^b	5.49 ª	3.66 ^b	0.356	
NDF	45.5ª	41.8 ^b	44.7 ª	42.3 ^b	0.94	
Log cfu/fresh g						
LAB	6.73 ^c	7.06 ^b	7.71ª	7.67 ª	0.101	
Yeasts	6.63	6.65	6.63	6.77	0.087	
Molds	5.94	5.93	5.70	5.89	0.107	

Bacteria (165 V4 region)

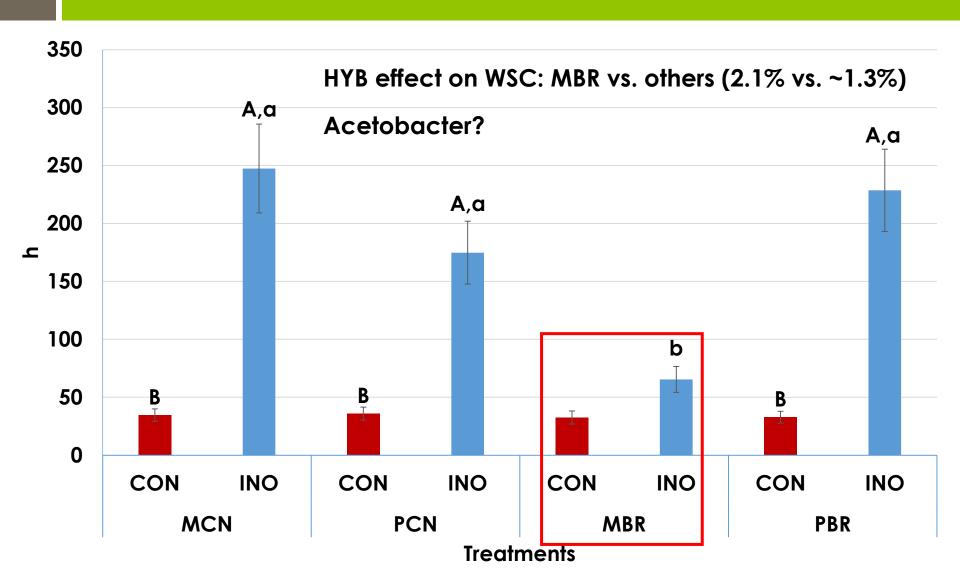
Alpha diversity Taxonomic profile


Enterobacteriaceae Dominates

Fungi (ITS region)

Alpha diversity Taxonomic profile

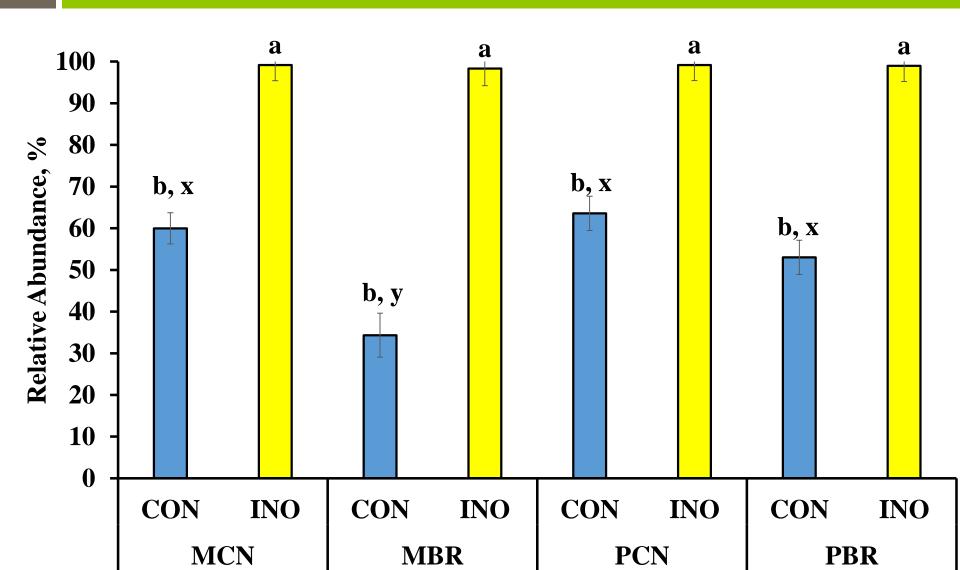
Unidentified Fungi Dominates

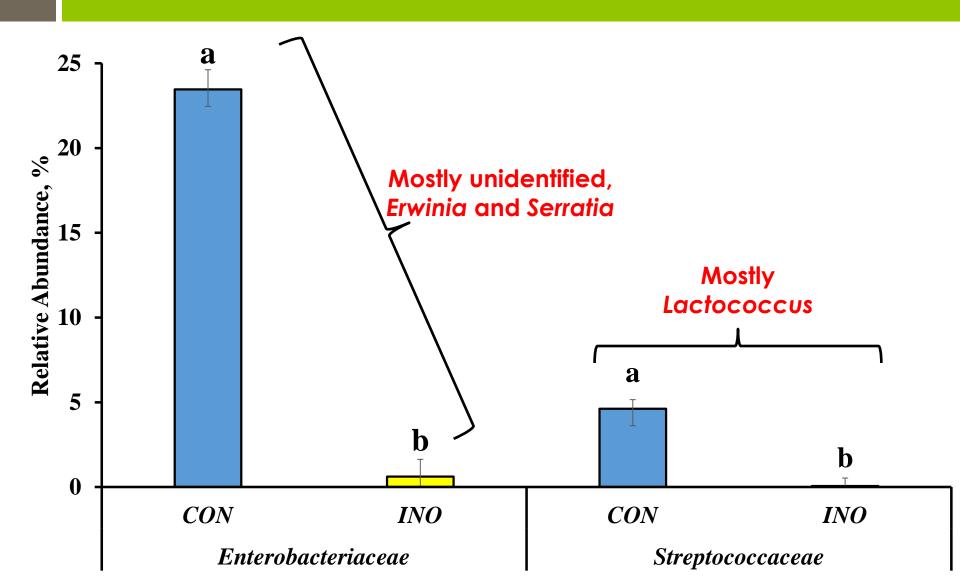

Day 100 of Ensiling

Bacteria (16S V4 region) Fungi (ITS region)

INO Effects

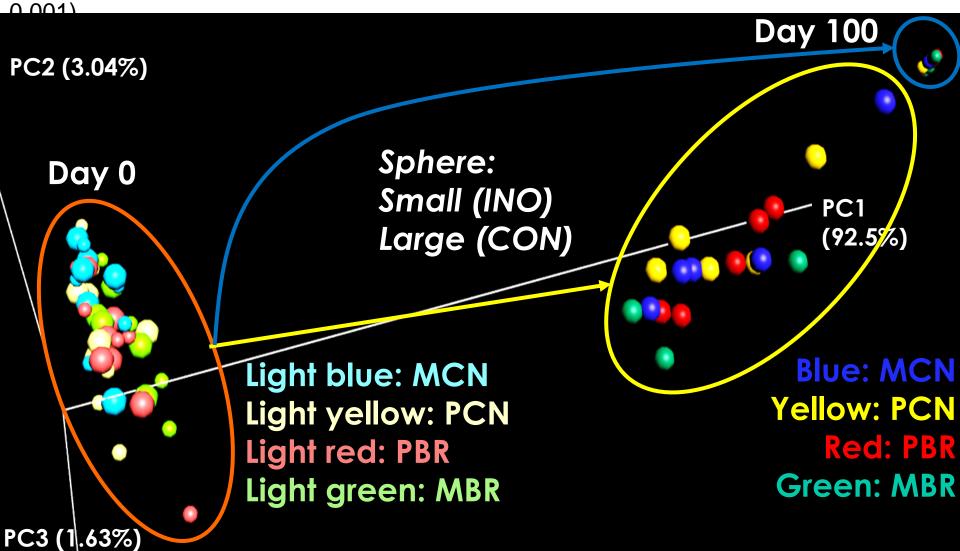
ltem	CON	INO	Change	SEM
DM recovery, %	94.6	94.0	=	1.07
NH ₃ -N, % of N	8.0	9.7	1	0.39
рН	3.80 ^B	4.02 ^A	1	0.041
Lactic acid, % of DM	4.82 ^A	2.65 ^B	\downarrow	0.436
Acetic acid, % of DM	0.51 ^B	1.69 ^A	1	0.132
Yeasts	5.13 ^A	3.78 ^B	\downarrow	0.440


Aerobic Stability: ADV × HYB


Bacteria (165 V4 region)

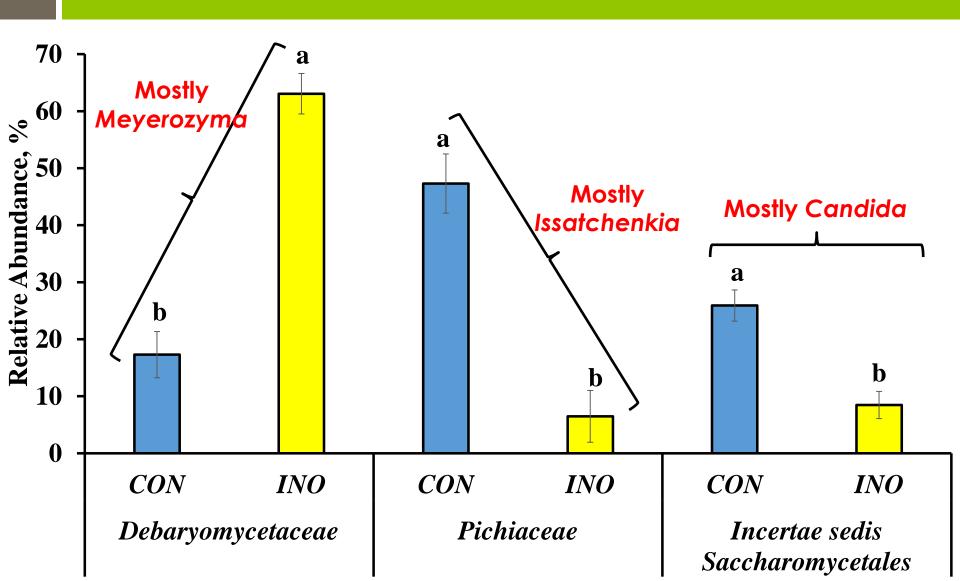
Alpha diversity Taxonomic profile Beta diversity

Lactobacillaceae Dominates

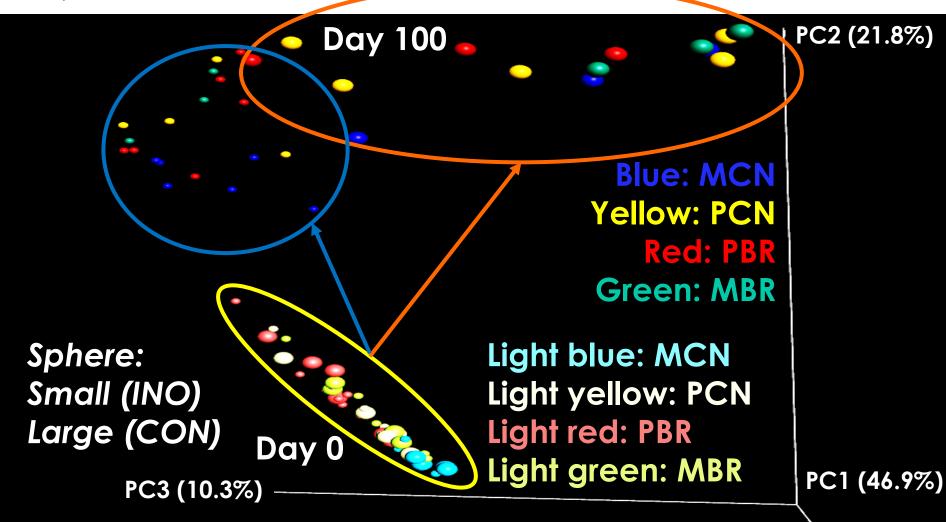


INO \downarrow *Enterobacteriaceae*

Weighted UNIFRAC PCoA Plot


**ANOSIM: d 0 vs. 100 (P = 0.001) and within d 100 between the CON and INO (P = 0.001) and within d 100 between the

Fungi (ITS region)


Alpha diversity Taxonomic profile Beta diversity

↑ Debaryomycetaceae ↓ Pichiacea

Bray-Curtis PCoA Plot

**ANOSIM: d 0 vs. 100 (P = 0.001) and within d 100 between the CON and INO (P = 0.001)

Alpha Diversity

Item	<u>Bacteria</u>		<u>Fungi</u>			
	OTUs	Evenness	OTUs	Evenness		
	Day 0					
MCN	434 ^c	0.005	~77.1	0.022 ^c		
PCN	444 ^c			0.032 ^{ab}		
MBR	654ª	~0.025		0.029 ^{bc}		
PBR	534 ^b			0.038ª		
SEM	16	0.0011	2.78	0.0033		
Day 100						
CON	276	. 0.017	43.6 ^b	0.055 °		
INO	61	~0.016	59.8 ª	0.033 ^b		
SEM	8.7	0.0011	2.95	0.0047		

Conclusions

Conclusions

Ensiled corn (100 d):

- Aerobic stability was extended at least 5× for all INO-treated HYB except for MBR.
 Similar DM recovery vs. CON.
- INO | bacterial and ↑ fungal diversity across all HYB.

Bacteria:

- INO: Lactobacillaceae (> 98%).
- CON: Lactobacillaceae (~50%), Enterobacteriaceae (~24%) Leuconostocaceae (~14%)

Fungi: INO had

- ↑ Debaryomycetaceae, ↓ Pichiaceae and i.s.
 Saccharomycetales.
- Large differences exist between CON and INO bacterial and fungal community structures.
 - INO microbial communities were closer and more consistent.

"INO improved dry corn silage quality by a consistent shift in the microbial community structure during ensiling across HYB, except for MBR"

Thanks!

Questions?

Contact: juan.romero@maine.edu and mscastil@ncsu.edu

- Funding: North Carolina Dairy Producer's Association.
- Lallemand Animal Nutrition (Milwaukee, WI) provided the inoculant.

