

Compaction and particle size distribution of maize as affected by dry matter, chop length and intensity of kernel processing

XVIII International Silage Conference 24-26 July 2018 Bonn, Germany

A SCHMANL

Johannes Thaysen

Landwirtschaftskammer Nordrhein-Westfalen

Heinz-Günter Gerighausen

JOHN DEERE Wolfram Richardt

Klaus Kellner, Alexander Even Christian Maack Institute of Agricultural Engineering University of Bonn

Structure

- Introduction and objective
- Material and methods
- Results and diskussion
- Conclusion

Introduction

Factors affecting losses associated with the aerobic stability of silage (Pahlow and Muck, 2009)

Thermographic image obtained after 5 days of open surface (60L bucket with insulation) (based on Jungbluth et al. 2016)

Institute of Agricultural Engineering

- Livestock Technology -

Objective of the tests

-UNIVERSITÄT BONN

Test Location & Field

- Futterkamp:
 - State owned test facility in northern Germany
 - 35 ha of corn
 - Dairy facility with 180 cows

Test field:

- Approx. 14 ha of corn variety (LG 30211, SZ210)
- Yield: 55 to 60 t/ha
- Harvest at 4 stages of maturity 9/15/2016- 10/5/2016
- DM at first harvest 29-30%, and at last harvest 39-43%

Institute of Agricultural Engineering

- Livestock Technology -

Procedure of crop handling in the test (every test variant)

Maize maturity A-D

6 skips of 60l are filled by the chopper

transport

compacted in buckets

samples are stored in vacuum bags and 1,5l glasses

Test to estimate the crop compaction under constant conditions (n=3)

Estimation of mass percent in 7 size ranges (n=3)

Electric sieve machine (mod. Leurs 2006)

Filling of 100 g dried silage crop

5 cycles of 3 sec. sleving

Weighing of all fractions

Round hole sieves in Polypropylen frame

Particle fractions (<3/ <6/<10/<15/<20/<25/>25 mm)

Results

DM of maize silage crop in the test variants at four stages of maturity (A-D)

20 days

DM density at four stages of maturity and chop length from 3 up to 29mm (n=6)

DM density versus chop length and crop DM (n=6)

UNIVERSITÄT BONN

Particle length distribution according to chop length (5-29mm) kernel processor (N= reversed sawtooth, S= reversed sawtooth with spiral groove) at differential speed of 40% and 50% (point of harvest C 34-36% DM)

Diskussion

Gas flow through a sample of maize dependent on crop density (35 % TM Δ P 0,3 Pa mod. HONIG, 1987)

Compaction of maize (sketched model)

uncompacted crop 300 bis 350 kg FM m⁻³ porosity 70-75%

Crop compaction works by shifting particles against each other and plastic deformation of leaf and stem peaces in order to fill most of the por volume

Conclusion

- Crop compaction was clearly affected by the adjusted chop length.
- Density decreased from 5mm to 17mm c.l. about 12%.
- Later stages of maturity with higher crop DM lead to a rising DM density.

But the increase was lower than the rising target values.

- Longer chop length increased the mass percent of bigger leaf and stem particles.
- The processing of kernel was only little affected.
- High DM affected higher proportion of small particles <6 and <3 mm.
- Effects of different kernel processors on frey out of the stem and leaf peaces could not be found by the sieving tests.

Institute of Agricultural Engineering

- Livestock Technology -

Thank You for Your attention!

Klaus Kellner, Alexander Even Christian Maack Institute of Agricultural Engineering University of Bonn

UNIVERSITÄT BONN

Johannes Thaysen

Landwirtschafts-

Landwirtschaftskammer INordrhein-Westfalen Heinz-Günter Gerighausen

Wolfram Richardt

LKS