First estimation and validation of a new model to predict dry matter loss based on temperature changes

I. A meta-analysis study

S. Pires, G. Copani, J. N. Joergensen, N. G. Nielsen, K. A. Bryan, K.L. Witt

G. Copani dkgico@chr-hansen.com

XVIII ISC

2018

Chr. Hansen Animal Health and Nutrition. Bøge Alle 10-12 - 2970 Hørsholm, Denmark

The **objective** of this meta-analysis study was to establish the regression **correlation** between **DM loss** and **increased temperature** after **24 hours** of **aerobic exposure**

New model for DM loss prediction – function of recorded temperature in the silage

A literature review (Obs.= 9) on the DM loss after 24 hours aerobic challenge was used as the basis for this meta-analysis study.

- Different silages (corn, alfalfa, and grass at DM ranging from 15-35%),
- Temperature and DM loss measured,
- DM loss (%) and temperature (°C) end points after 24 hours were plotted and submitted to a regression analysis (SAS institute),
- As a reference method a stepwise assessment of DM loss (McDonald et al. 1991) was compared with the new model.
- Two others linear equations were generated and compared to the new model.

DM loss (%) = 0.49 * T (°C) - 9.73

Obs. 1 from Wilkinson and Hall (1965); Obs. 2 from Henderson et al. (1979); Obs. 3 and 4 from Schukkling and Overvest (1980); Obs. 5 and 6 from Honig and Woolford (1980); Obs. 7 and 8 from Honig (1980); Obs. 9 from Rees (1982).

Existing models o	overview vs. new m	on Material Results & Discussion	Conclusion		
ltems	Step logic approach (McDonald et al., 1991)	EQ 1 (Linear regression based on 18 study from Henderson, 1979) EQ 2 (Linear regression based on 12 observations)		New model (Pires et al., 2018) (9 observations)	
Temperature	ΔT to ambient	ΔT to ambient	T max during AS	T max during AS	
Aerobic stability (AS)		9 days	24 hours <u>up to</u> <u>several days</u>	After <mark>24 hours</mark>	
Estimate DM losses	0-3-10-15% $\Delta T = 0; \ 0 \le \Delta T \le 1; \ 1 \le \Delta T \le 5 \text{ or } \Delta T \ge 5$	More precise (Overestimate)	Underestimate	Close to DM losses measured	
Equation		DM loss (%)= ΔT*0.62+1.05	DM loss (%)= T _{max} *0.14-1.78	DM loss (%) = 0.49 * T-9.73	
5 XVIII <u>1 S C</u> 2018	 Fit well when T ambient is No influence of T ambient T ambient is stable even du 	s stable e.g. mini silo trial ring AS	No controlled T ambient and AS duration	More general and practical	

Improveragio

Predicted vs. observed (meta) DM loss (%). Two models based on Δ to ambient temperature

DM loss (%) estimate

- The two models are over-estimating
- EQ 1 comes closer to observed DM losses (Meta data, overestimates DM loss by 1.32% on average).

Obs. 1 from Wilkinson and Hall (1965); Obs. 2 from Henderson et al. (1979); Obs. 3 and 4 from Schukkling and Overvest (1980); Obs. 5 and 6 from Honig and Woolford (1980); Obs. 7 and 8 from Honig (1980); Obs. 9 from Rees (1982).

Predicted vs. observed (meta) DM loss (%). Two models based on recorded temperature after 24 hours of aerobic stability.

DM loss (%) estimate

- EQ 2 is underestimating (by 0.69% points on average)
- New model naturally fits better to the Meta data (overestimates DM loss by 0.12% points on average)

Obs. 1 from Wilkinson and Hall (1965); Obs. 2 from Henderson et al. (1979); Obs. 3 and 4 from Schukkling and Overvest (1980); Obs. 5 and 6 from Honig and Woolford (1980); Obs. 7 and 8 from Honig (1980); Obs. 9 from Rees (1982).

	DM Loss (%) Recorded		DM Loss (%) Predicted							
Trials Crops (structure) [fermentation time, days]			Step logic approach (McDonald et al., 1991)		EQ 1 (Linear regression based on 18 study from Henderson, 1979)		EQ 2 (Linear regression based on 11 observations)		New model (Pires et al., 2018) (9 observations)	
Treatment	С	SSFC	С	SSFC	С	SSFC	С	SSFC	С	SSFC
Maize (big bales) [120]	3.4	1.2	15	15	20.2	10.8	3.1	0.4	7.1	-2.3
Maize (mini silo) [90]	8.2	5.6	15	10	6.2	3.4	1.9	1.1	3.1	0.3
Grass/legume (mini silo) [90]	3.1	1.9	10	10	4	2	1.8	1.3	2.6	1
Maize (mini silo) [8]	3.8	2.6	15	15	5.9	5	2.3	2	4.3	3.5
Maize (mini silo) [16]	3.3	2.2	15	15	6.3	5.4	2.2	2.1	4.4	3.9
Maize (mini silo) [32]	2.9	1.8	15	15	7.1	5.2	2.5	2	5.1	3.3
Alfalfa (mini silo) [8]	10.8	5.7	15	10	11.4	4.1	3.4	1.8	8.2	2.8
Alfalfa (mini silo) [16]	7.5	4.9	15	10	7.9	3.4	2.7	1.6	5.7	2.2
Alfalfa (mini silo) [32]	7.3	5	10	3	7.1	4.1	2.4	1.7	4.9	2.5
Average	5.6	3.4	13.9	11.4	8.5	4.8	2.5	1.6	5.0	1.9

8

Improvena)

Limitations of delta to ambient temperature models – from a practical point.

 Without ΔT to ambient:
 More realistic DM loss estimation during fermentation - as well as feed out

 When opening the bunker – the "damp" of hot silage raises concern – but is only reflecting the T difference to ambient – not indicating silage heating due to spoilage.

 $10 \frac{\frac{XVIII}{15C}}{\frac{2018}{2018}}$

5% DM losses due to fermentation Unavoidable (McDonald et al., 1991) ≤8% DM losses after AS deterioration

The new model – Practical tool for the farmers

- We confirm that a linear correlation exists with DM loss and recorded silage temperature (independent from the ambient T)
- More practical model and related to face management
- Using a IR camera gives producers an instant indication if they should change de-facing principles
- The model has been already validated in several studies
 - ✓ WE-118: First estimation and validation of a new model to predict dry matter loss based on temperature changes –
 II. Validation of maize mini silo and big scale silage
 - ✓ WE-119: First estimation and validation of a new model to predict dry matter loss based on temperature changes –
 III. Validation of model in a crop with low ensilability
 - ✓ WE-120: First estimation and validation of a new model to predict dry matter loss based on temperature changes –
 IV. Validation of model in a short fermentation regime

Thanks for your attention

